Linking CMEs to Associated Solar Phenomena

Peter Gallagher, Pietro Zucca, Eoin Carley

School of Physics Trinity College Dublin Ireland

Göttingen Magnetischer Verein

- Trinity College Dublin was a site of Gottingen Magnetic Union (1836-1841).
- Magnetic measurements up to every 5 mins.
- Led to magnetic crusades by Edward Sabine and Humphrey Lloyd.

Sabine (1852): Sunspot cycle identical to geomagnetic cycle.

STEREO-A:12/11/08 12:40:00 AM

SDO/AIA 171 2011-11-20 21:28:13 UT

SDO AIA Fe XII (193 Å) 19-May-2015 09:01:18.840

SDO HMI Magnetogram 19-May-2015 08:22:23.400

HELIO Propagation Model

HELIO Front End - Mozilla Firefox <u>Eichier</u> Édition Affichage Historique Marque-pages Qu	utils <u>?</u>				- P -
🗲 🛞 msslkr.phys. ucl.ac.uk /Helio/				☆ マ C 🚼 - HELIO	ዖ 🎓 🍇 🔻
🞽 Windows Live Hotmail 📕 GRL Editor 🍚 IRAP Webmail					
A HELIO Front End					
HEUD	IELIOPHY	rsics in	NTEGRATED	OBSERVATORY	CARACTER
Home Search Plot Data Tools Lin	ks Help				
Data Cart	Select Parameter	r			×
CME Forward Propagation Model (from Sun to Parameters Select Dates #1 2011-02-14T00:00:00 Select Select Parameters	Pa Lo Wi Sp	arameter ongitude idth peed peedError ±	Value 0 45.0 800 0 try	Heliographic longitude in degrees (e.g., the position of a flare) Longitudinal width of the CME in degrees CME speed in km/s Error in the speed in km/s	▲ P 1 t a start date or a date range. If a t a start date or a date range. If a t a start date are equal they will treated as single time, otherwise as he range. P 2 fine additional task specific rameters.
Submit				Help Cancel Ok	ep 3 cck'submit' to send the query to the
					Depending on the query this may take a while.
📀 🚞 🔇 🕑 🗵					FR - 📴 🛱 🐿 🍪 😚 08:39 20/11/2012

HELIO Propagation Model

Perez-Suarez et al. (2012)

Ballistic Propagation Model

Input Property	Input Parameter
Initial time	$ au_i$
Initial distance	R_i
Final distance	R_{f}
Velocity range	$v \pm \Delta v$
Position angle	PA
Width	$(PA_N - PA_S) / 2$

- Search time window: $t_f \pm D t_f = t_i \frac{R_i R_f}{v \pm D v}$
- Search PA window: $PA \pm \Delta PA$

HI1 -> COR2

Input Property	Input Parameter
Initial time	$ au_i$
Initial distance	$12 R_S$
Final distance	$2 R_S$
Velocity range	200-600 km/s
Position angle	PA _{fit}
Width	$(PA_N - PA_S) / 2$

- Search time window: $t_{COR2} \pm D t_{COR2} = t_{HI1} \frac{R_{HI1} R_{COR2}}{v_{SW} \pm D v_{SW}}$
- Search PA window: $PA_{fit} \pm \Delta P$

Candidate Probability Space

HELCATS HI CME List

WP2 Catalogue

1 Deroject Wiki | Contact Us

The CME catalogue identified from the STEREO-HI instruments is shown below

This is version: TBD of the catalogue, released yyyy-mm-dd

Date range	PA mid: 0 to 360 degrees	PA width: 1	15 to 180 degre	es			
From 2007-01-01 to 2010-01-01							
Show 10 🗘 entries					Search:		Show / hide columns
D	 Date [UTC] 	0	sc 🌣	PA-N 0	PA-S ¢	Quality	≎ PA fit [deg] ≎
HCME_A20070419_01	2007-04-19 13:30	A	40)	140	Good	105
HCME_A20070502_01	2007-05-02 00:50	A	65	ō	100	Fair	90
HCME_A20070506_01	2007-05-06 06:50	A	85	5	120	Fair	100
HCME_A20070509_01	2007-05-09 13:30	A	50	5	125	Fair	90
HCME_A20070516_01	2007-05-16 01:30	A	30)	120	Good	80
HCME_A20070518_01	2007-05-18 00:10	A	95	5	115	Fair	110

Low Coronal Event Catalogue

Catalogue of events occuring the low corona which were associated with CMEs detected with the Heliospheric Imagers on board the STEREO spacecraft.

<1> No.	<2> Spacecraft (Stereo A/B)	<3> HI Date and Time (UT)	<4> HI PA North (degrees)	<5> HI PA South (degrees)	<6> COR2 Date and Time search window (UT)	<7> COR2 Cantidates Date and Time (UT)	<8> Flare Estimated Date and Time (UT)	<9> GOES Class	<10> NOAA Region (Location)	<11> Hale Class
29	А	29-Jul-200	7 240	300						

07:30

- ***** HI2 Parameters *****
- HI2 Start Time : 29-Jul-2007 07:30:00.000
- •
- ***** COR2 Search Parameters *****
- COR2 Start Time: 28-Jul-2007 18:37:46.668
- COR2 End Time : 29-Jul-2007 05:05:12.500
- Window (hours) : 10.457176
- COR2 PA-N : 240.000
- COR2 PA-S : 300.000
- - ***** Flare Search Parameters *****
- Flare Start Time: 28-Jul-2007 17:25:22.918
- Flare End Time : 28-Jul-2007 18:01:34.793
- Window (mins) : 36.197919

Low Coronal Event Catalogue

Catalogue of events occuring the low corona which were associated with CMEs detected with the Heliospheric Imagers on board the STEREO spacecraft.

<1> No.	<2> Spacecraft (Stereo A/B)	<3> HI Date and Time (UT)	<4> HI PA North (degrees)	<5> HI PA South (degrees)	<6> COR2 Date and Time search window (UT)	<7> COR2 Cantidates Date and Time (UT)	<8> Flare Estimated Date and Time (UT)	<9> GOES Class	<10> NOAA Region (Location)	<11> Hale Class
29	A	29-Jul-200 07:30	7 240	300	28-Jul-2007 18:37 29-Jul-2007 05:05		28-Jul-2007 17:25 28-Jul-2007 18:01			

Search Times: 28-Jul-2007 18:37 29-Jul-2007 05:05

Search PAs: 240-300

Low Coronal Event Catalogue

Catalogue of events occuring the low corona which were associated with CMEs detected with the Heliospheric Imagers on board the STEREO spacecraft.

<1> No.	<2> Spacecraft (Stereo A/B)	<3> HI Date and Time (UT)	<4> HI PA North (degrees)	<5> HI PA South (degrees)	<6> COR2 Date and Time search window (UT)	<7> COR2 Cantidates Date and Time (UT)	<8> Flare Estimated Date and Time (UT)	<9> GOES Class	<10> NOAA Region (Location)	<11> Hale Class
29	A	29-Jul-200 07:30	7 240	300	28-Jul-2007 18:37 29-Jul-2007 05:05	29-Jul-2007 01:37	28-Jul-2007 17:25 28-Jul-2007 18:01			

Low Coronal Event Catalogue

Catalogue of events occuring the low corona which were associated with CMEs detected with the Heliospheric Imagers on board the STEREO spacecraft.

<1> No.	<2> Spacecraft (Stereo A/B)	<3> HI Date and Time (UT)	<4> HI PA North (degrees)	<5> HI PA South (degrees)	<6> COR2 Date and Time search window (UT)	<7> COR2 Cantidates Date and Time (UT)	<8> Flare Estimated Date and Time (UT)	<9> GOES Class	<10> NOAA Region (Location)	<11> Hale Class
29	A	29-Jul-2007 07:30	7 240	300	28-Jul-2007 18:37 29-Jul-2007 05:05	29-Jul-2007 01:37	28-Jul-2007 17:25 28-Jul-2007 18:01	None	None	NA

Position Angle Variation with Distance

STEREO-A:12/11/08 12:40:00 AM

CME Deflection

Byrne et al. (2010)

Byrne et al. (2010)

Improved Inverse Tracking

• Use variable velocity profile

$$t_f = t_i - \check{0}_{R_i}^{R_f} \frac{1}{\nu(R)} dR$$

- Drag-based propagation model to obtain v(R)
- SOTERIA Drag-Based Model
 <u>http://oh.geof.unizg.hr/DBM/dbm.php</u>
- E.g Vršnak et al. (2010)

Modelling of CME Motion

• Simple model for CME propagation in heliosphere

$$\Gamma \frac{dv}{dt} = -\frac{1}{2} \Gamma D v^2 A C_D$$

• Numerical integration gives v(r).

• Vršnak et al. (2002), Reiner et al. (2003), Tappin (2006).

Slow CME

Maloney & Gallagher (2010)

Fast CME

Maloney & Gallagher (2010)

Coronal Mass Ejections

How are these related? How are shocks formed?

Coronal Waves

Radio, Bursts

Maloney & Gallagher (2011)

COR1 A 2008-04-05T16:15

COR2 A 2008-04-05T17:22

HI1 A 2008-04-06T02:09

CME and Shock-Front Positions

CME-Driven Shock Properties

Shock standoff distance (Δ) varies linearly with height.

Linear extrapolation gives $\Delta \sim 40 R_{sun}$ at Earth.

Can give improved estimate of shock arrival time at Earth.

CME and EUV Wave

Birr, STEREO and Nancay Radio Spectra

Carley et al. (2013)

Radio Spectra & Images and EUV Wave

How do we find shock heights?

Type II Height Problem

=> Given frequency gives single density but *model dependent* heights!

Shock Height Problem

Solution: Data-constrained Alfven Maps

Densities in low corona (<1.3 R_s)

Densities in high corona (>2.5 R_s)

Brightness $\mid i \rangle n_e(r)G(r,s)ds$

LOS

Electron Density Map

Two-component Density Model

• Spherically symmetric corona in hydrostatic equilibrium:

$$n_{ss}(r) = n_{ss}(r = 1 \ R_{\odot}) \exp\left[-rac{\mu m_p G M_{\odot}}{kT R_{\odot}} \left(rac{r_0}{r} - 1
ight)
ight]$$

• At $r < r_0$, reduces to plane parallel solution

$$n_{pp}(r) = n_{pp}(r = 1 \; R_{\odot}) \exp\left[-rac{r}{H}
ight]$$

• Combine spherically symmetric and plane parallel

$$n(r) = n_{pp}(r) + n_{ss}(r)$$

Electron Density Map

Electron Density Map

Magnetic Field Extrapolations

Alfvén Speed Map

Zucca et al. (2014)

Conclusions

- Linking heliospheric to coronagraph features
 Ballistic model works well
- Linking coronagraph to low corona and surface
 - Challenging deflection important
 - Activity in EUV images key
- Linking CMEs to IP and coronal Type II bursts
 - Difficult without radio images
 - Density and Alfven maps key

Solar Wind Velocity Distribution

De Toma (2009)

CME Velocity Distribution

Robbrecht et al. (2009)